CONJUGATIVE CYCLOADDITION OF N-CHLOROSULFONYL ISOCYANATE ACROSS VINYLCYCLOPROPANE SYSTEM. A NEW PATHWAY TOWARDS MACRO-HETEROCYCLES

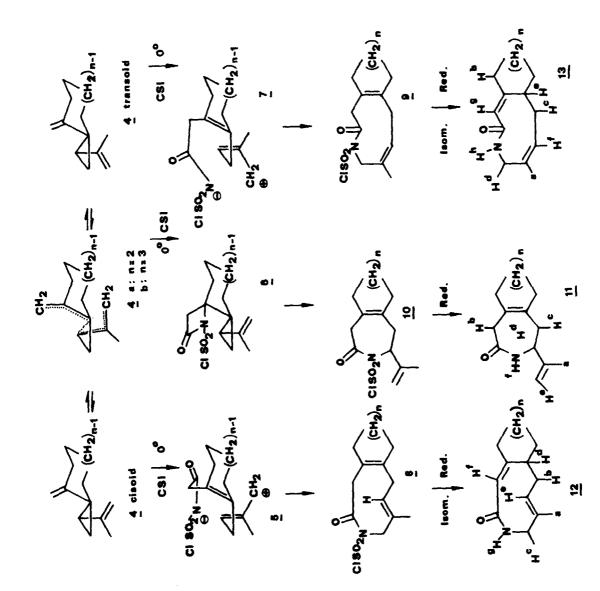
Marcel Langbeheim and Shalom Sarel*

Department of Pharmaceutical Chemistry, The Hebrew University School of Pharmacy, Jerusalem, Israel

(Received in UK 13 April 1978; accepted for publication 19 May 1978)

Summary. trans--Isopropenyl-4-methylene-spiro[2.x]alkanes ($\underline{4a}$ and $\underline{4b}$) react at 0°C with CSI to give as major products the *trans* bicyclic cycloazanondienones ($\underline{12a}$ - $\underline{12b}$) and as the minor products bicyclodihydro-azepinones ($\underline{11a}$ and $\underline{11b}$), and the respective *cis* isomer of bicyclic cycloazanondienones ($\underline{13a}$ and $\underline{13b}$).

Our studies¹ indicated that the electron donor capacity of the σ,π -electron system in 4-methylene-spiro[2.x]alkanes (1) is sensitive to substitution effects both in displacement reactions with Fe(CO)₅ and in [2+2]cycloadditions with electron-deficient olefins. The inclusion of substituents of high electron demand such as CN or COOCH₃ into the small ring in (1) was demonstrated to preclude entirely their reaction with tetracyanoethylene (TCNE).² By contrast, N-chlorosulfonyl isocyanate (CSI) cycloadded to the vinylic group in (1) to yield the *spiro*- β -lactam (2) which showed no tendency to add in turn to the *spiro*-cyclopropane to form the dihydroazepinone (3).


Replacement of the nitrile for an isopropenyl group in (<u>1</u>) was shown to impart considerably greater conjugative delocalization to the multi- π , σ -electron system in (<u>4</u>). This was inferred from the facile formation of nine-membered ring adducts on reaction with TCNE,³ and of eight-membered ring dienones from photolysis of (<u>4a-b</u>) in presence of Fe(CO)₅.⁴ Earlier, Paquette, Kirschner and Malpass⁴ have shown that the cyclopropane-containing unsaturated polycyclic system of bullvalene adds CSI at 0° to yield tricyclic adducts containing nine-membered ring lactam (17%), in addition to nine-membered ring lactone (31%) and (19%) 6-lactam.

The goal of this study was to realize modes of cycloaddition of CSI to *trans*-1-isopropenyl spiro[2.x]alkanes and gain synthetic entry to novel azamacrocycles of potential medicinal interest.

trans-1-Isopropenyl-4-methylene-spiro[2.x]alkane (<u>4a</u> and <u>4b</u>) were exposed to the action of small excess of CSI in dry ether at 0°C and the progress of the reaction monitored by ir spectroscopy. The formation of the respective spiro- β -lactams (<u>6a</u> and <u>6b</u>) [ir (CH₂Cl₂): 1820s, 1750s, 1580m, 1200-1180s cm⁻¹] was noted immediately. We did not attempt to isolate the latter because of their tendency to add to the spiro-cyclopropane and/or to the spiro-cyclopropylethylene to form the respective seven- (<u>10</u>) and nine-membered ring lactams (<u>8</u> and <u>9</u>) as the temperature elevated. After reduction with Na₂SO₃ and separation by either fractional crystallization, TLC or gas chromatography, we succeeded to isolate from the above reaction with (<u>4a</u>) (68%) three isomeric 1:1-adducts (<u>11a</u>):(<u>12a</u>):(<u>13a</u>)in 15:67:18 ratio and in parallel from (<u>4b</u>) (74%) the similar adducts:(<u>11b</u>):(<u>12b</u>):(<u>13b</u>) in a ratio of 11:74:15, respectively.

The dihydroazepinone structure of (<u>11a</u>) followed from its (i) elementary analysis as a $C_{13}H_{19}ON$ product; (ii) its ir (NaCl) bands at 3350m (N-H), 1735s (CONH), 1650m (C=C), 900m (C=C) cm⁻¹; (iii) its ¹H-nmr (60 MHz, CDCl₃) spectrum lacking cyclopropane signals and exhibiting τ 8.14 (3H, s, H^a), 7.91-7.12 (2H, m, H^c), 7.14-6.92 (2H, m, H^b), 6.08 (1H, bd, J=14 Hz, H^d), 5.04 (1H, s, H^e), 4.92 (1H, s, H^e), 2.75 (1H, finely split s, H^f); (iv) its mass spectrum exhibited m/e 206 (M+1, 8%), 108 (C₈H₁₂, 100%).⁶

The major nine-membered-ring product (<u>12a</u>) was higher melting (m.p. 191-192°C) and of lower retention time (R_t = 37 min.) than the minor product (<u>13a</u>) (m.p. 188-189°C; R_t = 45 min., 20% Carbowax 20M, 200°C, f1. 80 ml/min.).

The trans isomer (12a) had (i) ir (KBr): 3200m (NH), 3080m, 1660s (CONH), 1630m (C=C), 900s (C=C); (ii) nmr (100 MHz, CDCl₃: lacking cyclopropane signals, 8.98-7.58 (8H, m), 8.18 (3H, s, H^a), 7.32 (2H, d, J=15Hz, H^b), 6.48 (2H, bd, J=16Hz, H^C), 5.79 (1H, q, J=5Hz, H^d), 5.04 (1H, d, J=3Hz, H^e), 4.02 (1H, bs, H^f), 3.91 (1H, bs, H⁹); (iii) uv (ether): 200 nm (ϵ =1000), 236 (ϵ =1200), 256 (ϵ =400); (iv) ms (70 ev): m/e 206 (M⁺+H, 20%), 205 (M⁺, 43%), 93 (100%).⁶

The pertinent data for the *cis* isomer (<u>13a</u>) was : (i) ir (KBr): 3460m, 3200s (NH), 1650s (CONH), 1620m (C=C), 900m, 860m (C=C); (ii) nmr (100 MHz, CDCl_3): 8.88-7.75 (m, 6H), 8.20 (3H, s, H^a), 7.59 (2H, d, J=12Hz, H^b), 6.98 (2H, dd, J=15Hz, 5Hz, H^C), 6.49 (2H, bd, J=12Hz, H^d), 5.95 (1H, d, J=12Hz, H^e), 5.44 (1H, dd, J=15Hz, 10Hz, H^f), 4.46 (1H, t, J=9Hz, H^g), 3.95 (1H, bs, H^h); (111) uv (ether): 200 nm (ϵ =1000), 236 nm (ϵ =8000); (iv) ms (70 ev): 205 (M⁺, 22%) 97 (100%).⁶

The emergence of $(\underline{11})$, $(\underline{12})$ and $(\underline{13})$ from the reaction with CSI can be rationalized in terms of *cisoid* - *transoid* conformer of (4) which experience an electrophilic attack, preferably at the methylene rather than at the isopropenyl carbon, to form the zwitter-ions (5) and (7) which collapse into (8) and (9). Reductive removal of the chlorosulfonyl group from (8) and (9) was accompanied with double-bond migration, providing the thermodynamically more stable α,β -unsaturated lactams (<u>12</u>) and (<u>13</u>).

Thermodynamically, the spiro- β -lactams (<u>6a-6b</u>) appear to be unstable, exhibiting tendency to add to the spiro-cyclopropane to form first the respective dihydroazepinones (<u>10a</u>), (<u>10b</u>) and then their isomers (<u>11a</u>) and (<u>11b</u>). The spiro- β -lactams of the parent species 4-methylene spiro[2.x]alkanes, by contrast could not be detected, yielding the corresponding dihydroazepinones even at -70[•].⁷

REFERENCES

- S. Sarel, A. Felzenstein and J. Yovell, J.C.S. Chem. Comm., 753 (1974); S. Sarel,
 A. Felzenstein, R. Victor and J. Yovell, J.C.S. Chem. Comm., 1025 (1974).
- 2. M. Langbeheim and S. Sarel, Tetrahedron Letters, 1219 (1978).
- 3. S. Sarel and M. Langbeheim, J.C.S. Chem. Comm., 593 (1977).
- 4. S. Sarel and M. Langbeheim, J.C.S. Chem. Comm., 827 (1977).
- 5. L.A. Paquette, St. Kirschner and J.R. Malpass, J.Amer. Chem. Soc., 92, 4330 (1970).
- 6. The structures of (<u>11b</u>),(<u>12b</u>) and (<u>13b</u>) were deduced similarly from the pertinent spectroscopic and analytical data.
- 7. S. Sarel, A. Felzenstein and J. Yovell, Tetrahedron Lett., 451 (1976).